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Abstract We examine the entropy of stationary nonequilibrium measures of boundary
driven symmetric simple exclusion processes. In contrast with the Gibbs–Shannon entropy
(Bahadoran in J. Stat. Phys. 126(4–5):1069–1082, 2007; Derrida et al. in J. Stat. Phys.
126(4–5):1083–1108, 2007), the entropy of nonequilibrium stationary states differs from
the entropy of local equilibrium states.

Keywords Nonequilibrium stationary states · Large deviations · Quasi-potential ·
Boundary driven symmetric exclusion processes

1 Introduction

In the last decade important progress has been accomplished in the understanding of non-
equilibrium stationary states through the study of stochastic lattice gases ([4, 5, 8] and ref-
erences therein).

The simplest nontrivial example of such dynamics is the one-dimensional simple sym-
metric exclusion process on the finite lattice {1,2, . . . ,N − 1} with particle reservoirs cou-
pled to the sites 1 and N − 1. In this model the microscopic states are described by the
vector η = (η(1), η(2), . . . , η(N − 1)), where η(i) = 1 if the site i is occupied and η(i) = 0
if the site is empty. Each particle, independently from the others, perform a nearest-neighbor
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symmetric random walk with the convention that each time a particle attempts to jump to
a site already occupied the jump is suppressed. At the boundaries, particles are created and
destroyed in order for the density to be α at the left boundary and β at the right boundary,
0 ≤ α, β ≤ 1.

We denote by μN
α,β the stationary state of this system which is a probability measure in

the space of configurations and which can be expressed in terms of a product of matrices
[9]. Since the particle number is the only conserved quantity in the bulk, in the scaling limit
N → ∞, i/N → x ∈ [0,1], the system is described by a single density field ρ(x), x ∈ (0,1).
The typical density profile ρ̄(x) is the stationary solution of a partial differential equation
with boundary conditions. In the context of symmetric exclusion processes,

ρ̄(x) = α(1 − x) + βx.

The nonequilibrium stationary states exhibit long range correlations [13] which are
responsible in the large deviations regime for the non locality of the free energy func-
tional [2, 9]. More precisely, if γ stands for a density profile different from the typical one ρ̄,
the asymptotic probability of γ is exponentially small and given by

μN
α,β

[
γ (·)] ∼ e−NVα,β (γ ),

where the so called nonequilibrium free energy Vα,β is a non local functional.
Since in equilibrium the probability of such large deviations is determined by the induced

change in the entropy, it is natural to investigate the entropy of nonequilibrium stationary
states.

Denote by SN(νN) the Gibbs–Shannon entropy of a state νN :

SN

(
νN

) = −
∑

η

νN(η) logνN(η),

where the sum is carried over all lattice configurations η. Recently, Bahadoran [1] proved
that for a large class of stochastic lattice gases the Gibbs–Shannon entropy of nonequi-
librium stationary states has the same asymptotic behavior as the Gibbs–Shannon entropy
of local equilibrium states. In our context of boundary driven symmetric simple exclusion
processes this result can be stated as follows. Denote by νN

α,β the product measure

νN
α,β(η) =

N−1∏

i=1

ρ̄(i/N)η(i)
[
1 − ρ̄(i/N)

]1−η(i)
.

Thus, at site i, independently from the other sites, we place a particle with probability
ρ̄(i/N) and leave the site empty with probability 1 − ρ̄(i/N). Bahadoran proved that

lim
N→∞

1

N
SN

(
μN

α,β

) = lim
N→∞

1

N
SN

(
νN

α,β

)
.

The long range correlations of the nonequilibrium stationary state is therefore not captured
by the Gibbs–Shannon entropy.

Derrida, Lebowitz and Speer [10] showed that for the symmetric simple exclusion
process the difference

SN

(
μN

α,β

) − SN

(
νN

α,β

)
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converges as N → ∞, and that the limit depends on the two points correlation functions.
Hence, the long range correlations appear in the first order correction to the Gibbs–Shannon
entropy.

In this article we examine the entropy of the stationary nonequilibrium states μN
α,β . In the

classical Boltzmann–Gibbs theory of equilibrium statistical mechanics [12], the steady state
μN

β (η) of a microstate η is given by

μN
β (η) = 1

ZN(β)
exp

(−βH(η)
)

(1.1)

where β is the inverse of the temperature, H(η) the energy of η and ZN(β) the partition
function. The Boltzmann entropy is then defined as the limit, when the degrees of freedom N

of the system converges to infinity, of 1/N times the logarithm of the number of microstates
with a prescribed energy:

S(E) = lim
δ→0

lim
N→∞

N−1 log

(∑

η

1
{|H(η) − NE| ≤ δN

})
,

where the summation is performed over all configurations η and where 1{A} is the indicator
of the set A. The pressure P (β) is defined by

P (β) = lim
N→∞

1

Nβ
logZN(β)

and the Boltzmann entropy is related to the pressure function by

S(E) = inf
β>0

{
βP (β) + βE

}
.

In view of (1.1) and by analogy, we define the energy of a microstate η as − logμN
α,β(η)

and the entropy of the stationary nonequilibrium measure μN
α,β by

Sα,β(E) = lim
δ→0

lim
N→∞

N−1 log

( ∑

η∈	N

1
{|N−1 logμN

α,β(η) + E| ≤ δ
})

.

We propose in (2.5) a variational formula for the entropy function Sα,β in terms of the
nonequilibrium free energy Vα,β and the equilibrium Gibbs–Shannon entropy, that we con-
jecture to be valid for a large class of boundary driven stochastic lattice gases. This formula
is based on a strong form of local equilibrium, stated as assumption (H). We present in (2.9)
an explicit formula for the entropy function Sα,β and we show in (2.13) that it is strictly
concave, being the Legendre transform of a strictly concave function Pα,β , identified as the
nonequilibrium pressure. This last point is proved in Sect. 4.

In Sect. 3 we compute the entropy of stationary nonequilibrium measures of boundary
driven zero range processes and in Sect. 7 we show that the entropy of the nonequilibrium
stationary states μN

α,β is different from the entropy of the local equilibrium states νN
α,β . In

Sect. 5, we determine the energy band and describe the density profiles with lowest and
largest energy. In Sect. 6, we examine the isentropic surfaces and in the appendix we show
that the strong form of local equilibrium holds for the symmetric simple exclusion process
by using the ideas of [9].
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2 Stationary Nonequilibrium Entropy Function

Fix an integer N ≥ 1, 0 < α ≤ β < 1 and let 
N := {1, . . . ,N − 1}. Denote by 	N :=
{0,1}
N the configuration space and by η the elements of 	N , so that η(x) = 1, resp. 0, if
site x is occupied, resp. empty, for the configuration η. We denote by σx,yη the configuration
obtained from η by exchanging the occupation variables η(x) and η(y), i.e.

(
σx,yη

)
(z) :=

⎧
⎪⎨

⎪⎩

η(y) if z = x,

η(x) if z = y,

η(z) if z �= x, y,

and by σxη the configuration obtained from η by flipping the configuration at x, i.e.

(
σxη

)
(z) :=

{
1 − η(x) if z = x,

η(z) if z �= x.

The one-dimensional boundary driven symmetric exclusion process is the Markov
process on 	N whose generator LN can be decomposed as

LN = L0,N + L−,N + L+,N ,

where the generators L0,N , L−,N , L+,N act on functions f : 	N → R as

(L0,Nf )(η) =
N−2∑

x=1

[
f

(
σx,x+1η

) − f (η)
]
,

(L−,Nf )(η) = {
α
[
1 − η(1)

] + (1 − α)η(1)
}[

f
(
σ 1η

) − f (η)
]
,

(L+,Nf )(η) = {
β
[
1 − η(N − 1)

] + (1 − β)η(N − 1)
}[

f
(
σN−1η

) − f (η)
]
.

We denote by ηt the Markov process on 	N with generator LN . Since the Markov process
ηt is irreducible, for each N ≥ 1, and 0 < α ≤ β < 1 there exists a unique stationary state
denoted by μN

α,β .
The entropy function Sα,β : R+ → {−∞} ∪ [0, log 2] associated to the nonequilibrium

stationary state μN
α,β is defined by

Sα,β(E) = lim
δ→0

lim
N→∞

1

N
log

∑

η∈	N

1
{∣∣N−1 logμN

α,β(η) + E
∣
∣ ≤ δ

}

whenever the limits exist. To keep notation simple, we sometimes denote Sα,β by S.
Note that we may include in the sum μN

α,β(η):

Sα,β(E) = E + lim
δ→0

lim
N→∞

1

N
logμN

α,β

{∣∣N−1 logμN
α,β(η) + E

∣
∣ ≤ δ

}
. (2.1)

In particular,

Jα,β(E) = E − Sα,β(E) (2.2)

is the large deviations rate function of the random variables −N−1 logμN
α,β(η) under the

probability measure μN
α,β .
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At equilibrium α = β , the stationary state μN
α,β is a Bernoulli product measure with den-

sity α and the entropy function is given by

Sα(E) := Sα,α(E) = −s

(
− E + log(1 − α)

logα − log(1 − α)

)
, (2.3)

where

s(θ) = θ log θ + (1 − θ) log(1 − θ)

represents the Gibbs–Shannon entropy. This formula is valid for E in the energy band
[E−(α),E+(α)] where

E−(α) = − log
{
max(α,1 − α)

}
, E+(α) = − log

{
min(α,1 − α)

}
.

In the case α = 1/2 the energy band is reduced to the point log 2 and S1/2(log 2) = log 2.
Outside the energy band we have Sα(E) = −∞.

Identity (2.3) can be derived from the large deviations principle for the random variable
−N−1 logμN

α,α(η), which in the equilibrium case is an average of i.i.d. random variables.
Denote by 〈 · , · 〉 the scalar product in L2([0,1]). Let M be the set of measurable pro-

files m : [0,1] → [0,1] equipped with the topology induced by weak convergence, namely
mn → m in M if and only 〈mn,G〉 → 〈m,G〉 for every continuous function G : [0,1] → R.
For every m ∈ M the nonequilibrium free energy [2, 9] Vα,β(m) of m is defined by

Vα,β(m) =
∫ 1

0

{
m(x) log

m(x)

F (x)
+ (

1 − m(x)
)

log
1 − m(x)

1 − F(x)
+ log

F ′(x)

β − α

}
dx,

where F ∈ C1([0,1]) is the unique increasing solution of the non linear boundary value
problem

{
F ′′ = (m − F) (F ′)2

F(1−F)
,

F (0) = α, F (1) = β.
(2.4)

To keep notation simple we frequently denote Vα,β by V .
Decompose the set 
N into r = ε−1 adjacent intervals K1, . . . ,Kε−1 of size εN and

denote by M = (M1, . . . ,Mr) the number of particles in each box. Let

ν(M1, . . . ,Mr) =
∑

η∈	N

1
{∑

x∈K1

η(x) = M1, . . . ,
∑

x∈Kr

η(x) = Mr

}
μN

α,β(η)

be the probability to find Mj particles in the interval Kj , 1 ≤ j ≤ r . Denote by μN
α,β(·|M)

the probability measure μN
α,β conditioned to have Mj particles in Kj , j = 1, . . . , r . The set

of configurations η such that
∑

x∈Kj
η(x) = Mj , 1 ≤ j ≤ r , is denoted by 	N(M) and its

cardinality by ZN(M). We shall assume that for every 0 < α ≤ β < 1,

lim
ε→0

lim sup
N→∞

sup
M

sup
η∈	N (M)

1

N

∣
∣log

{
ZN(M)μN

α,β(η|M)
}∣∣ = 0. (H)

We present in the appendix a formal derivation of this hypothesis.
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Assumption (H) states that the stationary state μN
α,β conditioned on the number of par-

ticles on macroscopic intervals is uniformly close in a logarithmic sense to the uniform
measure as the number of intervals increases. As we shall see, this alternative formulation
of local equilibrium plays a central role in the investigation of the entropy of stationary non-
equilibrium measures. The first main result of this article provides a variational formula for
the entropy function. We claim that for every 0 < α ≤ β < 1, E ≥ 0,

Sα,β(E) = sup
m∈M

{
S(m) : Vα,β(m) + S(m) = E

}
, (2.5)

where

S(m) = −
∫ 1

0
s
(
m(x)

)
dx.

This formula is a straightforward consequence of assumption (H) and the large devi-
ations for the nonequilibrium stationary state μN

α,β . Indeed, we may rewrite μN
α,β(η) as

μN
α,β(η|M)ν(M). Hence, by definition of the entropy and by assumption (H),

S(E) = lim
δ→0

lim
ε→0

lim
N→∞

1

N
log

∑

η∈	N

1
{|N−1 logν(M) − N−1 logZN(M) + E| ≤ δ

}
.

The previous sum can be rewritten as

∑

M

ZN(M)1
{|N−1 logν(M) − N−1 logZN(M) + E| ≤ δ

}
.

Recall that N−1 logν(M) ∼ −V (m) and that N−1 logZN(M) ∼ S(m) where m(·) is the
macroscopic profile associated to M:

m =
r∑

i=1

ρi1
{[xi, xi+1)

}
, ρi = Mi/(Nε), Ki = {[Nxi], . . . , [Nxi+1] − 1

}
.

Since for a fixed ε the sum over M has only a polynomial number of terms in N and since
ZN(M) is exponentially large in N , only the term which maximizes ZN(M) contributes.
The result follows.

Note that by [3, Theorem 4.1], the functional Vα,β + S is continuous in M.

2.1 The Nonequilibrium Pressure

Let A : R∗ → R+, P : R → R be given by

A(θ) = Aα,β(θ) :=
∫ β

α

dx

[xθ + (1 − x)θ ]1/θ
, θ �= 0,

P (θ) = Pα,β(θ) := θ log

(
Aα,β(θ)

β − α

)
, θ �= 0,

(2.6)

P (0) = − log 2. As we shall see in (2.13), P is the Legendre transform of the entropy func-
tion S and may thus be identified with the nonequilibrium pressure. An elementary compu-
tation shows that logA is strictly increasing on the intervals (−∞,0) and (0,∞) and that
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limθ→±0 logA(θ) = ∓∞. Moreover,

P ′(θ) = 1

A(θ)θ2

∫ (β/(1−β))θ

(α/(1−α))θ

1

1 + x

(1 + x) log(1 + x) − x logx

(x1/θ + 1)(xθ−1 + xθ )1/θ
dx + log

A(θ)

β − α
(2.7)

for θ �= 0, and

P ′(0) = log

(
1

β − α

∫ β

α

dx√
x(1 − x)

)
.

We prove in Sect. 4 the following properties.

Lemma 2.1 The function P is a C2 strictly concave function. Moreover,

lim
θ→±∞

{
P (θ) − θE∓

} = 0, lim
θ→±∞

{
P (θ) − θP ′(θ)

} = 0,

where

E+ = E+(α,β) = log

(
1

β − α

∫ β

α

dx

min{x,1 − x}
)

,

E− = E−(α,β) = log

(
1

β − α

∫ β

α

dx

max{x,1 − x}
)

.

It follows from this lemma that limθ→±∞ θ{P ′(θ) − E∓} = 0, and that for each E ∈
(E−,E+), there exists a unique θE = θ(α,β,E) ∈ R such that

P ′(θE) = E. (2.8)

Define the functions γ± : R → R+ by

γ−(θ) = γ−(α,β, θ) = min

{(
α

1 − α

)θ

,

(
β

1 − β

)θ}
,

γ+(θ) = γ+(α,β, θ) = max

{(
α

1 − α

)θ

,

(
β

1 − β

)θ}
,

and let WE = Wα,β,E : [γ−(θE), γ+(θE)] → [0,1] be the monotone function given by

WE(x) = 1

A(θE)θE

∫ x

[α/(1−α)]θE
dt

(t1/θE + 1)(tθE−1 + t θE )1/θE
.

Clearly, WE([α/(1 − α)]θE ) = 0. On the other hand, the change of variables t =
[x/(1 − x)]θE shows that WE([β/(1 − β)]θE ) = 1 in view of the definition of A(θ). Let
hE : [0,1] → [γ−(θE), γ+(θE)] be the inverse of WE so that hE(0) = (α/(1 − α))θE ,
hE(1) = (β/(1 − β))θE .

2.2 An Explicit Formula for Sα,β

We are now in a position to present an explicit formula for the entropy function S. We claim
that for every 0 < α ≤ β < 1, E−(α,β) < E < E+(α,β),

Sα,β(E) = S

(
hE(x)

1 + hE(x)

)
. (2.9)
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Indeed, consider the variational problem (2.5). Let θ be the Lagrange multiplier and let
R(m,θ) be the function defined by

R(m,θ) = S(m) − θ
{
V (m) + S(m) − E

}
.

Since by [2, 9] (δV/δm) = log[m/(1 − m)] − log[F/(1 − F)], the conditions (δR/δm) =
∂θR = 0 imply that

m = (F/[1 − F ])θ

1 + (F/[1 − F ])θ
,

(2.10)∫ 1

0

{
m(x) logF(x) + [

1 − m(x)
]

log
[
1 − F(x)

] − log

(
F ′(x)

β − α

)}
dx = −E,

where F is the unique increasing solution of the non linear boundary value problem (2.4).
We report the first identity in (2.10) to (2.4) to get that

F ′′

F ′ =
{

F θ−1 − (1 − F)θ−1

(1 − F)θ + F θ

}
F ′.

Since d/dz[θ−1 log((1 − z)θ + zθ )] = zθ−1−(1−z)θ−1

(1−z)θ +zθ and (logF ′)′ = F ′′/F ′ we deduce from
the previous equation that

F ′ = A
[
(1 − F)θ + F θ

]1/θ
(2.11)

for some positive constant A determined by the boundary conditions satisfied by F :

A =
∫ 1

0

F ′(x)

[(1 − F)θ + F θ ]1/θ
dx.

The change of variables y = F(x) shows that A = A(θ) is given by (2.6).
Recall the definition of γ±(θ). Let gθ : [0,1] → [γ−(θ), γ+(θ)] be given by gθ = (F/(1−

F))θ and observe that

g′
θ = A(θ)θ

(
g

1/θ

θ + 1
)(

gθ−1
θ + gθ

θ

)1/θ
.

Define Uθ : [γ−(θ), γ+(θ)] → [0,1] by

Uθ(x) = 1

A(θ)θ

∫ x

(α/(1−α))θ

dt

(t1/θ + 1)(tθ−1 + t θ )1/θ

and remark that gθ = U−1
θ .

In the second equation of (2.10) replacing m by gθ/(1 + gθ ) and F ′ by the right hand
side of identity (2.11), we obtain that

1

θ

∫ 1

0

{
gθ (x)

1 + gθ (x)
loggθ (x) − log

(
1 + gθ (x)

)}
dx − log

A(θ)

β − α
= −E.

Performing the change of variables y = gθ (x), we get that

1

A(θ)θ2

∫ (β/(1−β))θ

(α/(1−α))θ

1

1 + x

x logx − (1 + x) log(1 + x)

(x1/θ + 1)(xθ−1 + xθ )1/θ
dx − log

A(θ)

β − α
= −E. (2.12)
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In view of the explicit expression for P ′, we may rewrite the previous identity as P ′(θ) = E.
Therefore, by (2.8), θ = θE , and hence Uθ = WE , gθ = hE . Moreover, in view of (2.10),
the density profile m which solves the variational problem (2.5) is m = hE/[1 + hE]. This
proves (2.9).

2.3 A Variational Formula for Sα,β

We conclude this section showing that Pα,β is the Legendre transform of Sα,β and can there-
fore be identified with the nonequilibrium pressure.

For every 0 < α ≤ β < 1, E ≥ 0,

S(E) = inf
θ∈R

{
θE − P (θ)

}
. (2.13)

If E belongs to the energy band (E−,E+) the infimum is attained at θE given by (2.8) and

S(E) = θEE − P (θE).

Moreover, S(E±) = 0 and S(E) = −∞ if E /∈ [E−,E+].
By abuse of notation we shall call S the Legendre transform of P . Usually the Legendre

transform is defined as a supremum and involves convex functions. However, by taking a
minus sign we may transform convex functions into concave functions and supremums into
infimums.

The proof of (2.13) is simple. In Sect. 5 we show that S(E) = −∞ outside [E−,E+] and
that S(E±) = 0. On the other hand, by Lemma 2.1, θE−P (θ) is a monotone non-decreasing
function for E ≥ E+. Hence, for E ≥ E+, infθ∈R{θE − P (θ)} = limθ→−∞{θE − P (θ)}. By
Lemma 2.1 again, {θE − P (θ)} converges to −∞, 0 for E > E+, E = E+, respectively.
Therefore, by the first observation of the proof, S(E) = inf{θE − P (θ)} for E ≥ E+. The
case E ≤ E− is analogous.

By Lemma 2.1, limθ→±∞{θE − P (θ)} = +∞ for E ∈ (E−,E+) and the function θ →
θE − P (θ) is strictly convex on R. Hence, inf{θE − P (θ)} = θEE − P (θE), where θE

solves (2.8). We may rewrite this expression as θEP ′(θE) − P (θE). In view of (2.7), to
conclude the proof of (2.13) it remains to show that the first term on the right hand side of
(2.7) multiplied by θ and computed at θ = θE coincides with (2.9). This can be shown by
performing the change of variables u = hE(x) in (2.9) and recalling that WE is the inverse
of hE .

It follows from (2.13) that S is concave and that P , the Legendre transform of the entropy,
can be identified with the pressure.

The equilibrium case can be recovered by letting α → β . In this case,

θ(α,α,E) = − 1

log[α/(1 − α)]
E + log(1 − α)

E + log(α)
,

hE(x) = −E + log(1 − α)

E + log(α)
.

3 Boundary Driven Zero Range Processes

We compute in this section the entropy of stationary nonequilibrium measures of boundary
driven zero range processes. The model is described by a positive integer variable η(x)
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representing the number of particles at site x ∈ 
N . The state space N

N is denoted 	N . At

exponential times one particle jumps with rate g(η(x)) to one of the nearest–neighbor sites.
The function g : N → R+ is increasing and g(0) = 0. We assume that the system interacts
with particle reservoirs at the boundary of 
N whose activity at the right is ϕ+ > 0 and at
the left is ϕ− > 0. The microscopic dynamics is defined by the generator

LN = L0,N + L−,N + L+,N

where

L0,Nf (η) =
N−2∑

x=1

{
g
(
η(x)

)[
f

(
T x,x+1η

) − f (η)
] + g

(
η(x + 1)

)[
f

(
T x+1,xη

) − f (η)
]}

,

L−,Nf (η) = g
(
η(1)

)[
f

(
S−

1 η
) − f (η)

] + ϕ−
[
f

(
S+

1 η
) − f (η)

]
,

L+,Nf (η) = g
(
η(N − 1)

)[
f

(
S−

N−1η
) − f (η)

] + ϕ+
[
f

(
S+

N−1η
) − f (η)

]
,

in which

(
T x,yη

)
(z) =

⎧
⎪⎨

⎪⎩

η(z) if z �= x, y,

η(z) − 1 if z = x,

η(z) + 1 if z = y

is the configuration obtained from η when a particle jumps from x to y, and

(
S±

x η
)
(z) =

{
η(z) if z �= x,

η(z) ± 1 if z = x

is the configuration where we added (resp. subtracted) one particle at x. Note that, since
g(0) = 0, the number of particles cannot become negative.

The invariant measures of the boundary driven zero range processes can be computed
explicitly. Let ϕN : 
N → R+ be the linear interpolation between ϕ− and ϕ+:

ϕN(x) =
(

1 − x

N

)
ϕ− + x

N
ϕ+. (3.1)

The invariant measure mN
ϕ−,ϕ+ is the product measure whose marginals are given by

mN
ϕ−,ϕ+

{
η : η(x) = k

} = 1

Z(ϕN(x))

ϕN(x)k

g(1) · · ·g(k)
, k ≥ 0,

where Z(ϕ) = 1 + ∑
k≥1 ϕk/[g(1) · · ·g(k)] is the normalization constant.

Denote by R : R+ → R+ the density of particle under the stationary state with activity
equal to ϕ on both boundaries:

R(ϕ) = EmN
ϕ,ϕ

[
η(x)

] = 1

Z(ϕ)

∑

k≥1

k
ϕk

g(1) · · ·g(k)
= ϕZ′(ϕ)

Z(ϕ)
,

and by � : R+ → R+ the inverse of R:

� = R−1.
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Under the stationary state, the typical density profile ρ̄ : [0,1] → R+ is the unique solu-
tion of the elliptic equation

{
��(ρ̄) = 0,

ρ̄(0) = R(ϕ−), ρ̄(1) = R(ϕ+),

where � stands for the Laplacian. As N ↑ ∞, the activity profile ϕN introduced in (3.1)
converges to �(ρ̄):

lim
N→∞

ϕ̂N = �(ρ̄),

where ϕ̂N : [0,1] → R+ is the function defined by ϕ̂N (0) = ϕ−, ϕ̂N (x/N) = ϕN(x), x ∈ 
N ,
ϕ̂N (1) = ϕ+ and extended to the interval [0,1] by linear interpolation.

The weight of a configuration η under the stationary state mN
ϕ−,ϕ+ is given by

mN
ϕ−,ϕ+(η) = exp

N−1∑

x=1

{
η(x) logϕN(x) − log

[
g(1) · · ·g(

η(x)
)] − logZ

(
ϕN(x)

)}
.

In the special case where g(k) = 1{k ≥ 1}, the weight mN
ϕ−,ϕ+(η) is a function of the empir-

ical density. Hence, if in this case we define for a profile ρ : [0,1] → R+,

Hϕ−,ϕ+(ρ) :=
∫ 1

0
ρ(x) log�

(
ρ̄(x)

) − logZ
(
�

(
ρ̄(x)

))
dx, (3.2)

we have that

mN
ϕ−,ϕ+(ρ) ∼ eN Hϕ−,ϕ+ (ρ).

In general, the weight of a configuration is not a function of the empirical density but
a function of the field associated to the variables ξ(x) = η(x) − log[g(1) · · ·g(η(x))]/
logϕN(x).

The nonequilibrium free energy functional is easy to compute in the context of zero
range boundary driven systems since the stationary state is a product measure. A simple
computation shows that

Vϕ−,ϕ+(ρ) =
∫ 1

0
ρ(x) log

�(ρ(x))

�(ρ̄(x))
− log

Z(�(ρ(x)))

Z(�(ρ̄(x)))
dx.

To present an explicit formula for the entropy function in this context, we need to intro-
duce some notation borrowed from the theory of large deviations of i.i.d. random variables.
Fix ϕ > 0, let M : R → R+ be given by

Mϕ(a) = 1

Z(ϕ)

∑

k≥0

ϕk

g(1) · · ·g(k)
eaFϕ(k),

where Fϕ(k) = k − [logϕ]−1 log[g(1) · · ·g(k)], and let Rϕ(a) = M ′
ϕ(a)/Mϕ(a). The large

deviations rate function Iϕ : R → R+ for the mean of the i.i.d. random variables ξ(x) =
η(x)−[logϕ]−1 log[g(1) · · ·g(η(x))], 1 ≤ x ≤ N −1, distributed according to mN

ϕ,ϕ is given
by

Iϕ(x) = xR−1
ϕ (x) − logMϕ

(
R−1

ϕ (x)
)
.
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In the particular case where g(k) = 1{k ≥ 1}, we get that Z(ϕ) = (1 − ϕ)−1, R(ϕ) =
ϕ/(1 − ϕ), �(ρ) = ρ/(1 + ρ), Fϕ(k) = k, ξ(x) = η(x), Mϕ(a) = (1 − ϕ)/(1 − ϕea),
Rϕ(a) = ϕea/[1 − ϕea] so that

Iϕ(x) = x log
x

ϕ
− (1 + x) log(1 + x) − log(1 − x)

= x log
�(x)

ϕ
− log

Z(�(x))

Z(ϕ)
. (3.3)

We emphasize that formulas (3.2) and (3.3) have been deduced only in the case g(k) =
1{k ≥ 1}, and may not hold in general.

For each 0 < ϕ− < ϕ+, define the entropy function Sϕ−,ϕ+ : R → R by

Sϕ−,ϕ+(E) = lim
δ→0

lim
N→∞

1

N
log

∑

η∈	N

1
{∣∣N−1 logmN

ϕ−,ϕ+(η) + E
∣∣ ≤ δ

}

whenever the limits exist. We may introduce in the sum mN
ϕ−,ϕ+(η) to get that the entropy

function is equal to

E + lim
δ→0

lim
N→∞

1

N
logmN

ϕ−,ϕ+
{∣∣N−1 logmN

ϕ−,ϕ+(η) + E
∣∣ ≤ δ

}
.

Since logmN
ϕ−,ϕ+(η) may be expressed in terms of the variables {ξ(x) : 1 ≤ x ≤ N − 1},

which are independent under mN
ϕ−,ϕ+ , the large deviations principle gives that

Sϕ−,ϕ+(E) − E = − inf
λ

∫ 1

0
I�(ρ̄(x))

(
λ(x)

)
dx,

where the infimum is carried over all profiles λ : [0,1] → R such that

∫ 1

0
λ(x) log�

(
ρ̄(x)

) − logZ
(
�

(
ρ̄(x)

))
dx = −E.

In view of (3.3), (3.2), in the case where g(k) = 1{k ≥ 1}, the entropy function becomes

Sϕ−,ϕ+(E) − E = − inf
ρ

∫ 1

0
ρ(x) log

�(ρ(x))

�(ρ̄(x))
− log

Z(�(ρ(x)))

Z(�(ρ̄(x)))
dx, (3.4)

where the infimum is carried over all density profiles ρ : [0,1] → R+ such that
Hϕ−,ϕ+(ρ) = −E. Therefore, in the case g(k) = 1{k ≥ 1}, where an explicit formula is
available, up to a linear term, Sϕ−,ϕ+(E) is obtained by minimizing the free energy func-
tional Vϕ−,ϕ+ over all density profiles ρ with energy Hϕ−,ϕ+(ρ) equal to −E.

Finally, if we define Ŝϕ−,ϕ+ : R → R by

Ŝ(E) = − inf

{∫ 1

0
ρ log

�(ρ)

�(ρ̄)
− log

Z(�(ρ))

Z(�(ρ̄))
dx :

∫ 1

0
[ρ − ρ̄] log�(ρ̄) dx = −E

}
,

we obtain that

Sϕ−,ϕ+(E) = E + Ŝϕ−,ϕ+

(
E +

∫ 1

0

{
ρ̄ log�(ρ̄) − logZ

(
�(ρ̄)

)}
dx

)
.
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Note that Ŝ(E) ≤ 0 and Ŝ(0) = 0. As above, we stress that the identity (3.4) and all formulas
thereafter were derived in the case g(k) = 1{k ≥ 1}.

4 The Nonequilibrium Pressure

We prove in this section Lemma 2.1. Recall the definition of the function P introduced in
(2.6). We first prove that P is strictly concave. A long and tedious computation concluded
with the change of variables t = xθ/[xθ + (1 − x)θ ] shows that for θ �= 0,

P ′′(θ) = 1

θ3

∫ B

A

s(t)2μθ(dt) − 1

θ3

(∫ B

A

s(t)μθ (dt)

)2

− 1

θ2

∫ B

A

t (1 − t)

(
log

t

1 − t

)2

μθ(dt), (4.1)

where A = αθ/[αθ + (1 − α)θ ], B = βθ/[βθ + (1 − β)θ ],

μθ(dt) := 1

Z(θ)
mθ(t) dt, mθ(t) := 1

t (1 − t)

1
1

t1/θ + 1
(1−t)1/θ

,

and Z(θ) is a normalizing constant which makes μθ a probability measure on [A,B].
By Schwarz inequality, the first line of the expression of P ′′ without θ−3 is positive.

Therefore, P is strictly concave on the interval (−∞,0). The strict concavity on the interval
(0,∞) follows from the claim that for all θ > 0, 0 < α < β < 1,

∫ B

A

s(t)2μθ(dt) −
(∫ B

A

s(t)μθ (dt)

)2

< θ

∫ B

A

t (1 − t)

(
log

t

1 − t

)2

μθ(dt). (4.2)

It is enough to prove that

∫ ∫

A≤r≤t≤B

{
s(t) − s(r)

}2
μθ(dr)μθ (dt) < θ

∫ B

A

t (1 − t)

(
log

t

1 − t

)2

μθ(dt).

Let H(u) = θ−1{u−1/θ + (1 − u)−1/θ }. Assume that θ �= 1 and denote by R the primitive of
H given by R(u) = (θ −1)−1{u1−1/θ − (1−u)1−1/θ }. Hence, by Schwarz inequality, the left
hand side of the previous inequality is bounded above by

∫ ∫

A≤r≤t≤B

(∫ t

r

{
s ′(u)

}2
H(u)−1du

)(∫ t

r

H(v)dv

)
μθ(dr)μθ (dt)

= 1

Z2

∫ B

A

du
{
s ′(u)

}2
H(u)−1

∫ u

A

dr

∫ B

u

dt mθ(r)mθ(t)
{
R(t) − R(r)

}
.

Since s ′(r) = log[r/(1 − r)], to conclude the proof of Claim (4.2) for θ �= 1, it remains to
show that

1

Z

∫ u

A

dr

∫ B

u

dtmθ(r)mθ(t)
{
R(t) − R(r)

}
< 1 (4.3)

for all θ > 0, θ �= 1 and 0 < A ≤ u ≤ B < 1.
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The left hand side of the previous inequality can be written as

∫ B

u

mθ(t)R(t) dt
1

Z

∫ u

A

mθ(r) dr −
∫ u

A

mθ(r)R(r) dr
1

Z

∫ B

u

mθ(t) dt.

We need to show that this expression is strictly bounded above by 1 for A ≤ u ≤ B . Let K

be a primitive of mθ R and rewrite the previous expression as

JA,B(u) := [
K(B) − K(u)

]
M(u) − [

K(u) − K(A)
][

1 − M(u)
]

= K(B)M(u) + K(A)
[
1 − M(u)

] − K(u),

where M(u) = Z−1
∫

[A,u] mθ(r) dr . This expression represents the difference between the
convex combination of K(A) and K(B), with weights M(u), 1 − M(u), and K(u). For
A ≤ u ≤ B , this difference is clearly absolutely bounded by the variation of K on the interval
[A,B]:

sup
A≤u≤B

|JA,B(u)| ≤ sup
A≤v≤B

K(v) − inf
A≤v≤B

K(v).

Maximizing over 0 ≤ A ≤ B ≤ 1, we get that

sup
0≤A≤u≤B≤1

|JA,B(u)| ≤ sup
0≤v≤1

K(v) − inf
0≤v≤1

K(v).

A simple computation shows that

K(t) = − θ

θ − 1
log

{
t1/θ + (1 − t)1/θ

}
.

In particular, for θ �= 1, K(0) = K(1) = 0, K is symmetric around 1/2, K ′(1/2) = 0, K

decreases on the interval [0,1/2] and increases on the interval [1/2,1]. Its total variation on
the interval [0,1] is therefore equal to −K(1/2) = [θ/(θ − 1)] log 21−1/θ = log 2 < 1. This
proves (4.3) and therefore Claim (4.2) for θ �= 1. The proof for θ = 1 is identical, the only
difference being the explicit expression for the primitives.

The behavior of P in a neighborhood of 0 is obtained through a simple Taylor expansion
of the integrand. We have

P (θ) = − log 2 + θ log I1 − θ2 I2

I1
+ O

(
θ3

)
,

where

I1 = 1

β − α

∫ β

α

dx√
x(1 − x)

and

I2 = 1

2(β − α)

∫ β

α

[logx]2 + [log(1 − x)]2

√
x(1 − x)

dx.

This completes the proof of the strict concavity of P on R.
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We now turn to the claim that

lim
θ→±∞

{
P (θ) − θE∓

} = 0.

We consider the limit θ ↑ ∞, the other one being similar. By definition of P , we have to
prove that

lim
θ→∞ θ

{
log

(
A(θ)

β − α

)
− E−

}
= 0. (4.4)

A preliminary computation shows that limθ→∞ log[A(θ)/(β − α)] = E−.
The proof of (4.4) depends on the positions of α and β with respect to 1/2, the most

difficult case being when 0 < α ≤ 1/2 ≤ β < 1. Write A(θ) as

∫ 1/2

α

dx

1 − x
exp

{
− 1

θ
log

[
1 +

(
x

1 − x

)θ]}
+

∫ β

1/2

dx

x
exp

{
− 1

θ
log

[
1 +

(
1 − x

x

)θ]}
.

We concentrate on the first integral. Since |eq − 1 − q| ≤ (q2/2)e|q|, q ∈ R, the first integral
is equal to

∫ 1/2

α

dx

1 − x
− 1

θ

∫ 1/2

α

dx

1 − x
log

[
1 +

(
x

1 − x

)θ]
+ 1

θ2
ε(θ),

where ε(θ) is a remainder absolutely bounded by [log 2]2 for θ > 1. The second inte-
gral in this expression vanishes as θ ↑ ∞ by the dominated convergence theorem. Hence,
log[A(θ)/(β − α)] = E− + o(θ−1), where θo(θ−1) vanishes as θ ↑ ∞. This proves (4.4).

We finally consider the last statement of the lemma. By (2.7) and by the change of vari-
ables x = uθ , P (θ) − θP ′(θ) is equal to

1

θA(θ)

∫ (β/(1−β))θ

(α/(1−α))θ

1

1 + x

x logx − (1 + x) log(1 + x)

(x1/θ + 1)(xθ−1 + xθ )1/θ
dx

= 1

A(θ)

∫ β/1−β

α/1−α

du

(1 + u)

uθ loguθ − (1 + uθ ) log(1 + uθ )

(1 + uθ )1+[1/θ] .

We examine the case θ ↑ ∞, 0 < α ≤ 1/2 ≤ β , the other ones being simpler. Since A(θ)

converges to a constant as θ ↑ ∞, only the integral has to be estimated. By the dominated
convergence theorem,

lim
θ→∞

∫ 1

α/1−α

du

(1 + u)

uθ loguθ − (1 + uθ ) log(1 + uθ )

(1 + uθ )1+[1/θ] = 0

because the numerator vanishes as θ ↑ ∞. On the other hand, the integral in the interval
[1, β/(1 − β)] can be written as

−
∫ β/1−β

1

du

u(1 + u)

log(1 + u−θ ) + u−θ log(1 + uθ )

(1 + u−θ )1+[1/θ] .

By the dominated convergence theorem, this expression vanishes as θ ↑ ∞. This concludes
the proof of the lemma.
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5 Energy Band

In this section, we determine the energy band [E−,E+], i.e. the range of V + S. Recall that
M is the set of profiles m : [0,1] → [0,1] and let M+, M− be the set of profiles m of the
form m(x) = 1{[0, x0]}, m(x) = 1{[x0,1]}, respectively, for some x0 ∈ [0,1].

Lemma 5.1 For every 0 < α ≤ β < 1,

sup
m∈M

{
V (m) + S(m)

} = sup
m∈M+

{
V (m) + S(m)

} = E+, (5.1)

and the supremum is attained for a unique profile m ∈ M+.

Proof By [3, (2.11)],

V (m) + S(m) = sup
F∈F

G(m,F ) (5.2)

where

G(m,F ) = −
∫ 1

0

{
m(x) logF(x) + [

1 − m(x)
]

log
[
1 − F(x)

] − log
F ′(x)

β − α

}
dx,

and F is the set of all C1 increasing functions F : [0,1] → [0,1] with boundary conditions
F(0) = α, F(1) = β . Moreover, the supremum is achieved at the unique solution F of the
boundary value problem (2.4).

We claim that for all F in F ,

sup
m∈M

G(m,F ) = sup
m∈M+

G(m,F ). (5.3)

The first identity in (5.1) follows from this assertion. To check (5.3), fix F in F and note
that the supremum is achieved by m = 1{[0, xF ]} ∈ M+, where xF = sup{x ∈ [0,1];F(x) ≤
1/2}, because F is increasing. Of course xF = 1 if β ≤ 1/2 and xF = 0 if α ≥ 1/2.

We claim that the solutions of the variational problem (5.1) belong to M+. Assume that
there exists m0 ∈ M such that V (m0) + S(m0) = supm∈M{V (m) + S(m)}. Let F0 be the
unique solution of the boundary value problem (2.4) associated to m0, let x0 = sup{x ∈
[0,1];F0(x) ≤ 1/2}, let m1 = 1{[0, x0]}, and let F1 be the solution of (2.4) associated to m1.
By (5.2),

G(m1,F0) ≤ G(m1,F1) = V (m1) + S(m1).

By definition of m0 and by (5.2), the previous expression is bounded above by

sup
m∈M

{
V (m) + S(m)

} = G(m0,F0) ≤ sup
m∈M

G(m,F0) = G(m1,F0),

where the last identity follows from the argument presented in the previous paragraph. Since
the first and the last terms in this sequence of inequalities are the same, all terms are equal
and G(m1,F0) = G(m1,F1). Since, by (5.2), supF G(m1,F ) is uniquely attained at F = F1,
F0 = F1. Therefore, in view of (2.4), m1 = m0 a.s.

Let mx0 = 1{[0, x0]}, x0 ∈ [0,1], and let F be the solution of the nonlinear boundary
value problem (2.4) with m = mx0 . On the interval [0, x0], F(x) = αeax for some a > 0, and
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on the interval [x0,1], F(x) = 1 − (1 − β)eA(1−x) for some A > 0. Since F must belong to
C1([0,1]), a and A satisfy

{
αaeax0 = (1 − β)AeA(1−x0),

αeax0 = 1 − (1 − β)eA(1−x0).

Thus,

eax0 = A

a + A

1

α
, eA(1−x0) = a

a + A

1

1 − β
, (5.4)

and therefore,

1

a
log

{
A

a + A

1

α

}
+ 1

A
log

{
a

a + A

1

1 − β

}
= 1. (5.5)

Moreover, since x0 belongs to [0,1], a, A must satisfy max{1 − β,1 − αea} ≤ a/(a + A) ≤
min{1 − α, (1 − β)eA}. Let f , g : [0,1] → R be given by f (x) = αeax , g(x) = 1 − (1 −
β)eA(1−x) and let h(x) = f (x)−g(x). Since h is convex and 0 ≤ x0 ≤ 1, h(x0) = h′(x0) = 0,
h(0) ≥ 0, h(1) ≥ 0. Hence, 1 − α ≤ (1 − β)eA, 1 − αea ≤ 1 − β so that

1 − β ≤ a

a + A
≤ 1 − α. (5.6)

By the explicit expression of F and by (5.4), (5.5), S(mx0) + V (mx0) is equal to

∫ 1

0
log

{
F ′(x)

β − α

}
dx −

∫ x0

0
logF(x)dx −

∫ 1

x0

log
(
1 − F(x)

)
dx

= 1

a
log

(
A

a + A

1

α

)
loga + 1

A
log

(
a

a + A

1

1 − β

)
logA − log(β − α).

Therefore, by the concavity of the log function and by (5.4),

S(mx0) + V (mx0) ≤ log

{
log

(
A

A + a

1

α

)
+ log

(
a

a + A

1

1 − β

)}
− log(β − α)

= log

{
log

[
a

a + A

(
1 − a

a + A

)
1

α (1 − β)

]}
− log(β − α).

By (5.6), the previous expression is bounded by

sup
p∈[1−β,1−α]

log

{
log

[
p(1 − p)

α(1 − β)

]}
− log(β − α) = E+,

where the last identity follows by a direct computation. The last supremum is realized for
p = 1 − β if β ≤ 1/2, for p = 1/2 if α ≤ 1/2 ≤ β and for p = 1 − α if 1/2 ≤ α.

Up to this point, we proved that supm∈M{S(m) + V (m)} ≤ E+. Assume that β ≤ 1/2
and set x0 = 1. In this case, by (5.4), a/(a + A) = 1 − β and all inequalities in the pre-
vious argument are in fact identities. In particular, S(m1) + V (m1) = supm∈M{S(m) +
V (m)} = E+. Moreover, since log is a strictly concave function and since by (5.4)
a/(a+A) > (1−β) for x0 < 1, S(m1)+V (m1) > S(mx0)+V (mx0) for x0 < 1. In the same,
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way, if α ≥ 1/2, S(m0) + V (m0) = supm∈M{S(m) + V (m)} = E+ and S(m0) + V (m0) >

S(mx0) + V (mx0) for x0 > 0.
Finally, if α ≤ 1/2 ≤ β , let x = log(2α)/ log[4α(1 − β)] and observe that

S(mx) + V (mx) = sup
m∈M

{
S(m) + V (m)

} = E+

and that S(mx) + V (mx) > S(mx0) + V (mx0) for x0 �= x. �

Lemma 5.2 For every 0 < α ≤ β < 1,

inf
m∈M

{
V (m) + S(m)

} = inf
m∈M−

{
V (m) + S(m)

} = E−.

Proof Recall (5.2). Since for each F in F , G(·,F ) is a continuous function for the weak
topology, V + S is lower semicontinuous. In view of the explicit expression of G and by
Jensen’s inequality, V +S is bounded below. Hence, there exists m0 ∈ M such that V (m0)+
S(m0) = infm∈M{V (m) + S(m)}.

Let E∗− = infm∈M{V (m)+S(m)} = infm∈M supF∈F G(m,F ). This expression is bounded
below by supF∈F infm∈M G(m,F ). By the explicit expression of G ,

inf
m∈M

G(m,F ) = G(mF ,F ),

where mF belongs to M−. If α ≥ 1/2, β ≤ 1/2, mF ≡ 1, mF ≡ 0, respectively. Otherwise,
mF = 1{[xF ,1]}, where xF is the unique point where F is equal to 1/2.

Assume that α ≥ 1/2. In this case, E∗− ≥ supF∈F G(1,F ) = V (1) + S(1) ≥ E∗−. To con-
clude the proof of the lemma it remains to compute supF∈F G(1,F ) which can be done as
in the previous lemma. The case β ≤ 1/2 is similar.

Assume that α < 1/2 < β . In this case we have that E∗− ≥ supF∈F G(mF ,F ) =
sup0<x<1 supF∈Fx

G(1{[x,1]},F ), where Fx = {F ∈ F : F(x) = 1/2}. Fix 0 < x < 1. In
each interval [0, x], [x,1], the variational problem supF∈Fx

G(1{[x,1]},F ) is similar to the
one in (5.2). In the interval [0, x] the solution Fx,0 of this variational problem solves the dif-
ferential equation (2.4) with m ≡ 0 and boundary conditions F(0) = α, F(x) = 1/2. Anal-
ogously, in the interval [x,1] the solution Fx,1 solves the differential equation (2.4) with
m ≡ 1 and boundary conditions F(x) = 1/2, F(1) = β . These solutions can be computed
explicitly and one obtains that

Fx,0(y) = 1 − (1 − α) exp

{
− log[2(1 − α)]

x
y

}
, 0 ≤ y ≤ x,

Fx,1(y) = β exp

{
log(2β)

1 − x
(y − 1)

}
, x ≤ y ≤ 1,

sup
F∈Fx

G
(
1
{[x,1]},F ) = x log

log 2(1 − α)

x
+ (1 − x) log

log 2β

1 − x
− log(β − α).

Maximizing over x we deduce that x∗ = log[2(1 − α)]/ log[4(1 − α)β] is the optimal value
of x and that

E∗
− ≥ log

{
1

β − α

∫ β

α

dx

max{x,1 − x}
}
.
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Moreover, a simple computation shows that for F ′
x∗,0(x

∗) = F ′
x∗,1(x

∗). Hence, the func-
tion G : [0,1] → [α,β] defined by G(y) = Fx∗,0(y)1{y ∈ [0, x∗]} + Fx∗,1(y)1{y ∈ (x∗,1]}
belongs to F and solves the boundary value problem (2.4) for m = 1{[x∗,1]}. Hence, by
definition of E∗− and by (5.2)

E∗
− ≤ S

(
1
{[

x∗,1
]}) + V

(
1
{[

x∗,1
]}) = G

(
1
{[

x∗,1
]}

,G
)

= log

{
1

β − α

∫ β

α

1

max{x,1 − x}
}
.

This proves the lemma and shows that a profile with minimum energy is given by

mα,β = 1
{[

log[2(1 − α)]
log[4(1 − α)β] ,1

]}
.

�

We proved in the previous lemma that

inf
m∈M

sup
F∈F

G(m,F ) = sup
F∈F

inf
m∈M

G(m,F ).

Fix 0 < α ≤ β < 1 and assume that V (m) + S(m) = E∗−. Then,

m(1 − m) = 0 a.s. (5.7)

Indeed, fix a profile m in M. Since V (m) + S(m) = G(m,F ), where F is the solution
of (2.4),

δ[V + S](m)

δm
= δG(m,F )

δm
+ δG(m,F )

δF

δF

δm
.

Since F solves the Euler equation (2.4) associated to the variational problem supG G(m,G),
δG(m,F )/δF = 0. On the other hand, δG/δm = − log[F/(1 − F)], so that

δ[V + S](m)

δm
= − log

F

1 − F
.

This expression does not vanish because F is strictly increasing. Therefore, the extremal
values of V + S are attained at the boundary.

This formal argument can be made rigorous. By the proof of Theorem 7.1 in [6], V and
therefore V + S is Gâteaux differentiable, and the Gâteaux derivative of V + S at m is equal
to − log[F/(1 − F)].

It follows from the previous results and the variational formula (2.5) that for 0 < α ≤
β < 1,

S(E) = −∞ for E /∈ [E−,E+] and S(E±) = 0. (5.8)

6 Isentropic Surface

We determine in this section the isentropic surfaces defined by

EK = {
E ≥ 0 : Sα,β(E) = K

}
, K ∈ [0, log 2].
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6.1 The Equilibrium Case

Assume that α = β . We have already seen right after (2.3) that the energy band is reduced
to the point log 2 in the case α = 1/2. Assume therefore that α �= 1/2 and fix K ∈ [0, log 2).
There exist exactly two solutions 0 < m−(K) < 1/2 < m+(K) < 1 of −s(m) = K . Hence,
in view of (2.3), the level set EK = {E−(K),E+(K)}, where

E±(K) = − log(1 − α) − log
α

1 − α
m±(K).

For K = log 2, EK is the singleton {−(1/2)[logα + log(1 − α)]}.
6.2 The Nonequilibrium Case

Assume now that α < β . Let D : R → R be given by D(θ) = θP ′(θ) − P (θ). Since
D′(θ) = θP ′′(θ) and since, by Lemma 2.1, P is strictly concave, D is strictly increasing on
(−∞;0] and strictly decreasing on [0,+∞). Moreover D(0) = log 2 and, by Lemma 2.1,
limθ→±∞ D(θ) = 0. In particular, for every K ∈ (0, log 2) there exist exactly two values
θ−(K) < 0 < θ+(K) such that θ±(K)P ′(θ±(K)) − P (θ±(K)) = K .

Fix 0 < K < log 2. By (2.13), E belongs to EK if and only if K = θEP ′(θE) − P (θE) =
D(θE), where P ′(θE) = E. Hence θE = θ±(K) so that E = P ′(θ±(K)) and

EK = {
P ′(θ+(K)

)
,P ′(θ−(K)

)}
.

If we let α and β vary, we see that the K-isentropic surface is composed of the two
manifolds E−

K = P ′(θ+(K)) and E+
K = P ′(θ−(K)) which satisfy

E−
K(α,β) ≤ E+

K(α,β).

7 Comparison with Local Equilibria

In this section, we compare the entropy function Sα,β with the entropy function associated to
product measures with a slowly varying density profile that will be called local equilibrium
entropies.

Let νN
α,β be the product probability measure on {0,1}N−1 given by

νN
α,β(η) =

N−1∏

x=1

ρ̄(x/N)ηx
(
1 − ρ̄(x/N)

)1−ηx
,

where ρ̄ : [0,1] → [α,β] is the stationary profile ρ̄(x) = (1 − x)α + xβ . Denote by S̃ :=
S̃α,β : R+ → {−∞} ∪ [0, log 2] the entropy function corresponding to the Gibbs state νN

α,β :

S̃(E) = lim
δ→0

lim
N→∞

1

N
log

∑

η∈	N

1
{∣∣N−1 logνN

α,β(η) + E
∣∣ ≤ δ

}
(7.1)

whenever the limits exist.
Let P̃ := P̃α,β : R → R be the function defined by

P̃ (θ) = 1

β − α

∫ β

α

log

(
1

xθ + (1 − x)θ

)
dx.
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Lemma 7.1 P̃ is a C2 strictly concave function and

lim
θ→±∞

P̃ (θ)

θ
= Ẽ∓, lim

θ→±∞
{
P̃ (θ) − θP̃ ′(θ)

} = 0,

where

Ẽ− = 1

β − α

∫ β

α

log
1

max{x,1 − x} dx, Ẽ+ = 1

β − α

∫ β

α

log
1

min{x,1 − x} dx.

Moreover, as θ → 0,

P̃ (θ) = − log 2 + θ

β − α

∫ β

α

log
1√

x(1 − x)
dx + O

(
θ2

)
.

The proof is elementary and left to the reader. It follows from this result that

lim
θ→±∞ P̃ ′(θ) = Ẽ∓.

Proposition 7.2 For E ≥ 0,

S̃(E) = inf
θ∈R

{
θE − P̃ (θ)

}
.

If E belongs to the energy band (Ẽ−, Ẽ+), the infimum is attained at θ̃E = θ̃E(α,β) the
unique solution of P̃ ′(θ) = E and S̃(E) = θ̃EE − P̃ (θ̃E). S̃(E) = −∞ if E /∈ [Ẽ−, Ẽ+] and
S̃(Ẽ±) = 0.

Proof Multiplying and dividing the indicator in (7.1) by 2N−1, we reduce the computation
of the entropy to a large deviations problem for independent Bernoulli random variables and
we obtain that

S̃(E) = sup
m∈M

{
S(m) : I (m) + S(m) = E

}
,

where I stands for the large deviations rate function given by

I (m) =
∫ 1

0

{
m(x) log

m(x)

ρ̄(x)
+ [

1 − m(x)
]

log
1 − m(x)

1 − ρ̄(x)

}
dx.

One should compare this expression with the variational formula (2.5) for the nonequilib-
rium entropy.

Repeating the arguments presented in the proof of (2.9), we deduce that

S̃(E) = S

(
ρ̄θ

(1 − ρ̄)θ + ρ̄θ

)
,

where θ is the unique solution of P̃ ′(θ) = E. The rest of the proof is similar to the one
of (2.13). �

Let E0 = P ′(0), Ẽ0 = P̃ ′(0). By Lemmas 2.1 and 7.1,

E0 = log

(
1

β − α

∫ β

α

1√
x(1 − x)

dx

)
, Ẽ0 = 1

β − α

∫ β

α

log

(
1√

x(1 − x)

)
dx.
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By Jensen’s inequality, Ẽ− < E−, Ẽ+ < E+ and Ẽ0 < E0. Since min{x,1 − x} ≤ 1/2 ≤
max{x,1 − x} and

√
x(1 − x) ≤ 1/2, we may compare all variables with log 2 to obtain

in the end that Ẽ− < E− < log 2 < Ẽ0 < min{E0, Ẽ+} ≤ max{E0, Ẽ+} < E+ in the case
α < β .

The nonequilibrium and the local equilibrium entropy differ. For every 0 < α < β < 1,
S < S̃ in the interval (E−, Ẽ0) and S̃ < S in the interval (E0, Ẽ+).

Indeed, fix E ∈ (E−, Ẽ0). By Jensen’s inequality, θ−1P̃ (θ) < θ−1P (θ), θ ∈ R. There-
fore, for every θ > 0, θE − P (θ) < θE − P̃ (θ). On the other hand, since E < E0 and
θE0 = 0, P ′(θE) = E < E0 = P ′(θE0) = P ′(0). Hence, since P ′ decreases, θE > 0. A simi-
lar argument shows that θ̃E > 0. In conclusion, by the variational formula for the entropies
presented in (2.13) and Proposition 7.2,

S(E) = inf
θ∈R

{
θE − P (θ)

} = inf
θ>0

{
θE − P (θ)

}

< inf
θ>0

{
θE − P̃ (θ)

} = inf
θ∈R

{
θE − P̃ (θ)

} = S̃(E).

A similar argument proves the other claim.
Consider the sequence of random variables YN(η) = −N−1 logμN

α,β(η), ỸN (η) =
−N−1 logνN

α,β(η) defined on the probability space 	N equipped with the probability mea-
sure μN

α,β , νN
α,β , respectively. By (2.1), the sequence (YN : N ≥ 1) satisfies a large devi-

ations principle with convex rate function J (E) = E − S(E). By similar reasons, the
sequence (ỸN : N ≥ 1) satisfies a large deviations principle with convex rate function
J̃ (E) = E − S̃(E).

Bahadoran [1] proved that EμN
α,β

[YN ] and EνN
α,β

[ỸN ] have the same limit given by the

Gibbs–Shannon entropy

Ē = −
∫ 1

0
s
(
ρ̄(x)

)
dx,

where ρ̄(x) = α + (β − α)x. This result can be recovered from ours.

Lemma 7.3 The nonnegative rate functions J and J̃ vanish at the same and unique point

Ē = P ′(1) = P̃ ′(1).

In particular, YN under μN
α,β , and ỸN under νN

α,β converge in probability to Ē.

Proof By Lemma 2.1, the variational formula (2.13) and the assertions following this for-
mula, the nonnegative rate function J is strictly convex on [E−,E+], differentiable in
(E−,E+), and equal to +∞ outside of the interval [E−,E+]. It has therefore a unique
minimum Ē ∈ [E−,E+].

By (2.13) and (2.8), S ′(E) = θE on (E−,E+), where θE is the unique solution of
P ′(θ) = E. By Lemma 2.1, limθ→±∞ P ′(θ) = E∓. It follows from the previous two facts
that limE→E± J ′(E) = ±∞. Since J is strictly convex, J has a unique minimizer Ē in
(E−,E+) solution of θĒ = S ′(Ē) = 1. Applying P ′ on both sides of this equation, we de-
duce that Ē = P ′(1).

We claim that J (Ē) = 0. To prove this identity we need to show that S(Ē) = Ē or, in
view of (2.13), that θĒĒ − P (θĒ) = Ē. Since θĒ = 1, this equation is reduced to P (1) = 0,
which is easy to check in view of the explicit formula (2.6) for the nonequilibrium pressure.
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The same argument applies to J̃ and the result follows from the identity

P ′(1) = P̃ ′(1) = −
∫ 1

0
s
(
α + (β − α)x

)
dx. �

In [9, Sect. 7], the authors compute the limit of the variance of the sequences (YN : N ≥ 1)

and (ỸN : N ≥ 1) and show that the limits differ. This result can be recovered from a second
order expansion of the entropy function Sα,β .

We have seen that the rate function J has a unique minimum at Ē. It is well known
from the theory of large deviations that the asymptotic variance of the sequence YN is given
by J ′′(Ē)−1 = −S ′′(Ē)−1. Since θĒ = 1 and since S is the Legendre transform of the non-
equilibrium pressure P , we have that S ′′(Ē) = 1/P ′′(θĒ) = 1/P ′′(1). Hence, −P ′′(1) is the
asymptotic variance of the sequence YN .

By taking θ = 1 in (4.1) we obtain that

−P ′′(1) = 1

β − α

∫ β

α

t (1 − t)

[
log

(
t

1 − t

)]2

dt

− 1

2(β − α)2

∫ β

α

dx

∫ β

α

dy
(
s(x) − s(y)

)2
. (7.2)

A long and tedious computation shows that this expression coincides with the limiting vari-
ance derived in [9].

A similar computation in the equilibrium model gives that the asymptotic variance of the
sequence ỸN is equal to

1

β − α

∫ β

α

t (1 − t)

[
log

(
t

1 − t

)]2

dt.

In particular, the asymptotic variance in the nonequilibrium model is strictly bounded above
by the asymptotic variance in the equilibrium model.
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Appendix A: The Assumption (H)

The stationary state μN
α,β of the symmetric simple exclusion process with open boundary

conditions can be expressed in terms of a product of matrices [9]: There exists matrices D,
E and vectors |V 〉, 〈W | such that

DE − ED = D + E,
{
(1 − β)D − βE

}|V 〉 = |V 〉,
〈W |{αE − (1 − α)D

} = 〈W |
and

μN
α,β(η) = ωN(η)

〈W |(D + E)N−1|V 〉 , (A.1)
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where the weight ωN(η) is given by

ωN(η) =
〈

W

∣
∣∣
∣∣

N−1∏

x=1

{
η(x)D + [

1 − η(x)
]
E

}
∣
∣∣
∣∣
V

〉

.

The partition function 〈W |(D + E)N−1|V 〉 can be computed explicitly [9, (3.11)]:

〈W |(D + E)N−1|V 〉 = (N + 1)!
2(β − α)N

. (A.2)

Decompose the set {1, . . . ,N − 1} into r = ε−1 adjacent intervals K1, . . . ,Kr of size
εN and denote by M = (M1, . . . ,Mr) the number of particles in each box. We recall that
μN

α,β( · |M) is the probability measure μN
α,β conditioned to have Mj particles in Kj , j =

1, . . . , r .
Let η+, η− be the configuration in 	N(M) with all particles in each interval Kj at the left

most, right most positions, respectively. Hence, if Kj = {x1, . . . , xL}, Mj = M , η+(x) = 1
if and only if x1 ≤ x ≤ xM , η−(x) = 1 if and only if xL−M+1 ≤ x ≤ xL.

Lemma A.1 For 0 < α ≤ β < 1, η ∈ 	N(M),

μ
(
η−|M) ≤ μ(η|M) ≤ μ

(
η+|M)

.

Proof This is a simple consequence of the matrix product form of the stationary state.
Let η be any configuration in 	N and let 1 ≤ x ≤ N − 1 be any site such that η(x) = 1,
η(x + 1) = 0. Then, ωN(σ x,x+1η) − ωN(η) is equal to

〈

W

∣∣
∣∣
∣

x−1∏

y=1

{
η(y)D + [

1 − η(y)
]
E

}[ED − DE]
N−1∏

y=x+2

{
η(y)D + [

1 − η(y)
]
E

}
∣∣
∣∣
∣
V

〉

= −
〈

W

∣
∣∣
∣∣

x−1∏

y=1

{
η(y)D + [

1 − η(y)
]
E

}[D + E]
N−1∏

y=x+2

{
η(y)D + [

1 − η(y)
]
E

}
∣
∣∣
∣∣
V

〉

= −ωN−1(ξ) − ωN−1(ζ ) ≤ 0,

where ξ , ζ are the configuration of 	N−1 given by ξ = (η(1), . . . , η(x − 1),1, η(x +
2), . . . , η(N − 1)), ζ = (η(1), . . . , η(x − 1),0, η(x + 2), . . . , η(N − 1)). �

Hence, the derivation of the assumption (H) is reduced to the proof that

lim
ε→0

lim sup
N→∞

sup
M

1

N

∣∣logμN
α,β

(
η+|M) − logμN

α,β

(
η−|M)∣∣ = 0

or, equivalently, to the proof that

lim
ε→0

lim sup
N→∞

sup
M

1

N

∣∣logμN
α,β

(
η+) − logμN

α,β

(
η−)∣∣ = 0.

For each fixed ε > 0 and M, the configurations η+, η− are associated to density pro-
files ρ+, ρ− : [0,1] → [0,1] defined by ρ+ = ∑

1≤i≤r 1{[(i − 1)ε, (i − 1)ε + ρi)}, ρ− =∑
1≤i≤r 1{[iε − ρi, iε)}, where ρi = Mi/N , 1 ≤ i ≤ r and 1{A} stands for the indicator



1038 C. Bernardin, C. Landim

of the set A. Therefore, by the large deviation principle for the density profiles under the
stationary state μN

α,β [2, 7, 9, 11],

lim
N→∞

1

N
logμN

α,β

(
η±) = −Vα,β

(
ρ±)

,

where Vα,β is the functional introduced just before (2.4).
Hence, to prove assumption (H), it remains to show that

lim
ε→0

sup
ρ

∣∣Vα,β

(
ρ+) − Vα,β

(
ρ−)∣∣ = 0,

where the supremum is carried over all 0 ≤ ρi ≤ ε, 1 ≤ i ≤ r . Since ρ±(x) is either 0 or 1, we
may replace in the previous formula, Vα,β by Vα,β + S. By [3, Theorem 4.1], this functional
is continuous in M. For each ε > 0, denote by ρ±,ε the profiles which attain the previous
supremum with Vα,β by Vα,β + S. By compactness of M, there exists a subsequence εk ↓ 0
for which

lim
ε→0

sup
ρ

∣
∣Vα,β

(
ρ+) − Vα,β

(
ρ−)∣∣

= lim
k→∞

∣∣Vα,β

(
ρ+,εk

) + S
(
ρ+,εk

) − Vα,β

(
ρ−,εk

) − S
(
ρ−,εk

)∣∣

and ρ+,εk converges weakly to some profile ρ. Clearly, the sequence ρ−,εk converges weakly
to the same profile ρ. Since Vα,β + S is continuous in M, assumption (H) is proved.
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